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Abstract

A new approach to calculating the magneto-quasi-

static but frequency-dependent inductance of three-

dimensional conductors is presented. A vector sur-

face integral formulation is used, as this requires

only a conductor surface discretization, and an ex-

citation source which ensures current conservation is

self-consistently computed. Results are presented to

demonstrate that the method is effective for comput-

ing the inductance and the resistance for generai 3-D

structures.

1 Introduction

Computing the correct inductance and resistance

values for arbitrary three-dimensional conductor ge-

ometries is important to designers of the intercon-

nect in high-speed digital systems. Currenty, three-

dimensional inductance calculation techniques are

based on the volume integral method [I] [2] [3].

These methods require that the conductor volume be

discretized, and to correctly model the skin effect at

high-frequency a very fine discretization of the con-

ductor volume near the surface is needed. Therefore,

when using volume integral methods, it is common

to use different discretizations for different frequency

ranges.

In this short paper, we present a new surface inte-

gral method which avoids volume discretization. The

basic idea is similar to the approaches used by [4]

[5] [6] for two-dimensional inductance calculations.

In these other efforts, the problem is formulated as a

surface integral equation using Green’s functions, and

then solved using a boundary element method. In

two-dimensions, however, the surface formulation is

simpler, because the unknowns are scalar and an ex-

citation source is easily derived. In three-dimensions,

the unknowns are vector quantities on conductor sur-

faces, and an excitation source which ensures current

conservation must be computed.

In Section 2, the basic surface formulation under

the magneto-quasi-static approximation is described.

Also given is the approach to the excitation calcula-

tion and expressions for the inductance and resistance

in terms of the vector unknowns on the surfaces. The

discretization scheme for the vector surface equations

as well as the methods for evaluating integrals of the

Green’s functions are explained in Section 3. In Sec-

tion 4, the results for an example conductor structure

are presented and compared to the previous work. Fi-

nally, conclusions and acknowledgements are given in

Section 5.

2 Formulation

Under the magneto-quasi-static assumption [7], the

Maxwell’s equations for the region inside the conduc-

tor are,

v x 1(7)= @i(F) = u(iui(~ – 64(O) (1)

v x Z(F) = v x (iWI(F) – 54(F)) = iLd@7(F), (2)

and for the out side dielct ric region are,

VX17(F)=0 (3)

V x ~(F) = V x iwl(F) = iwpl?(F), (4)

By using the dyadic Green’s function, the

Maxwell’s equations can be transformed into the fol-

lowing vector surface equations in terms of the tan-

gential electric and magnetic fields on the conductor
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Figure 1: Current conservation condition imposed

different cross sections

at

surfaces [8]. There are two sets of such integral equa-

tions, one for outside the conductor,

1. -
/– ;zwA(~ + {(E’ x iwA-(#)) x Vgou~(7, F)da’

L J.

J+ (ii’ x ifdpi(~))gout(~, #)}da’ = O,
s

and the other for inside the conductors,

I
~ti(~ + {(ii’ x #(#)) x Vg~n(F, 7’)}cta’

s

J+ {(ii’ . 17( F)) Vgin(F, F’)}da’
8

J+ {a(ii’ x id(i-q)g~n(~, F)}d(a’
s

/

= {a(ii’ x ti,(i))g~n(?, i’)}da’.
8

(5)

(6)

Here, the Green’s functions are gOUt (F, F) = ~mll&,,1 ,

and gin(~, 7) =
~-llfl-F’11/6, kineill F-? ’11/6*ktn “ “

47rl[F-if’1[
, where

15,h~n = 4~~, the skin depth at frequency u, These

Green’s functions are referred to as the free-space

Green’s and the spherical Hankel’s functions, respec-

tively.

Note that under the magneto-quasi-static assump-

t ion, the surface integral equations are written in

terms of the vector potential, iu~(~, and the mag-

netic field, ~(rv. The electric field due to the scalar

potential, @d(F), appears as the magnetic surface cur-

rent, R x &f$ (F), which is used to generate volume cur-

rent in the conductor [6]. The direction of the mag-

netic current is along the perimeter of cross section

cuts of the conductor.

The two equations are solved for the tangential vec-

tor potential and the magnetic field on the conductor

surfaces, which are continuous across the boundary

Figure 2: Local coordinate systems for panels

between the conductor and the dielectric. Th~ magni-

tudes of the magnetic surface current, fi x Ms (F’) are

determined to enforce current conservation condition.

That is, the volume current through any cross sections

for a single conductor is constant. For example, in Fig-

ure (1) the total current through the cross sectons 1

and 2 are the same, and can be written in terms of the

line integrals of the magnetic field as,

! I?(ry(k 1 H(F) . ii = constant.
sec 1 aec 2

Here, the line integrals are taken over the closed

boundaries of the cross sections of the conductor at

different locations. Finally, the expressions for the in-

ductance and resistance in terms of the surface field

quantities can be derived from an energy argument as,

Ls –~IM(
/

E(7)* . (Fi x ii, (F))da)/lcurrent12
surf

R = RE(
/

E(7)* o (ii X A7, (F))cla)/lcur7-ent12
surf

where, current = jring I?(F) . ~.

3 Discretization

The conductor surfaces are discretized into flat

quadrilateral panels on which the magnetic and elec-

tric field quantities are assumed constant. Since the

surface integral equations are in vector form+, it is nec-

essary to assign local coordinate system, 1 x F = ii,

to each panel as shown in Figure (2). The discretized

version of the integral equation (5) is, for example,
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Figure3: Non-singular Method

I g.tit(F, F’)da’] = O

P’

(7)

Equation (7) simply relates ~component of the vector

potential at a given panel, ZLAI (F), to the tangential

field quantities on all the panels representing the con-

ductor surfaces.

TO integrate the free-space Green’s function,

9out(~, F) = *f, over an arbitrary quadrilat-

eral panel, a closed form expression is available [9].

‘ As for the spherical Hankel’s function, gin(F, ?’) =
~-ll?-~’11/6. h,~eill@-F’11/6 $k, n

47rllF-71j
, there is no such formula. If

Tis not on the p“anel, this integration can be performed

easily numerical y. For the case when F is on the panel,

the integrand has an integrable singularity which must

be removed. To accomplish this, consider subdividing

a panel as shown in Figure (3), and rewriting the inte-

gral of the Green’s function in polar coordinates. Then

the integral of the spherical Hankel’s function over the

region shown in Figure (3) becomes,

/

eo

{exp(
‘XO/&h~n

COS(L9)+ sin(6) (x0 – zl)/yl )
o

~ ~()/68kjn
exp (

cos(8) + sin(8) (x0 – xl)/yl
)]dO,

which has no singularity. The integrals involving par-

tial derivatives of the Green’s functions can be evalu-

ated by finite differences.
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Figure 4: Results for Two Parallel Rectangular Con-

ductors

4 Results

The inductance and resistance for the two paral-

lel rectangular conductors were computed using the

above technique. The conductors’ dimensions are 2

by 2 by 10 meters, and they are separated by 2 me-

ters. The problem is treated as a single loop, with

one conductor acting as the return path. The re-

sults are shown in Figure 4 along with those from

FASTHENRY which uses the volume integral method

[1]. Each conductor’s surface was discretized into 120

panels for the surface integral technique, while each

conductor’s cross-section was discretized into 121 fila-

ments for FASTHENRY. Results for more interesting

conductor structures shown in Figures (5) and (6) are

reported in Figure (7).

5 Conclusion

A new three-dimensional inductance calculation

technique that can handle arbitrary conductor geome-

tries was implemented and compared to a standard

volume-element method. As shown in Figure (4) the

results are in excellent agreement for the medium to

high frequency range. In particular, the resist ante at

very high frequencies can be correctly mod f’lled us-

ing the new surface integral method. The 1, .Illts for

the two other examples shown in Figures (f;) :md (5)

demonstrate this surface integral approach’s ability to
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Figure 5: Two Curved Conductors
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Two Curved Conductors andFigure 7: Results for

Two Pin Structures

High-Speed Interconnect Systems”, IEEE Trans.

Figure 6: Two Adj scent Pin Structures

compute the inductances and the resistances of con-

ductors with curved surfaces.

For low frequencies, however, the inductances cal-

culated using this surface integral method have errors,

as can be seen in Figure (7). This problem is currently

being investigated, and the results from a full numer-

ical study of the new technique will be reported in

future studies.
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